Sơn công nghiệp cao cấp

Sơn công nghiệp cao cấp cho ngành sơn

sơn công nghiệp ngành tôn

Chương 26 : U -Nhiên liệu của thế kỷ XX (Phần 1)

18-04-2020

Khó mà nói được rằng, nhà bác học người Đức Martin Claprôt sẽ đặt tên gì cho nguyên tố hoá học đã được phát hiện vào năm 1789, nếu như trước đó mấy năm không xảy ra một sự kiện làm náo động tất cả mọi giới trong xã hội: năm 1781, khi quan sát bầu trời đầy sao bằng kính thiên văn tự tạo của mình, nhà thiên văn học người Anh là Uyliam Hecsơn (William Herschel) đã phát hiện ra một đám mây phát sáng mà lúc đầu ông tưởng là sao chổi, nhưng sau đó ông khẳng định là mình đang nhìn thấy một hành tinh mới mà từ trước tới giờ chưa ai biết đến – hành tinh thứ bảy của hệ mặt trời. Để suy tôn vị thần trời trong thần thoại cổ Hy Lạp, Hecsơn đã đặt tên cho hành tinh mới này là Uran. Mang ấn tượng sâu sắc về hiện tượng này, Claprôt đã lấy tên của hành tinh mới để đặt cho nguyên tố mà ông vừa tìm ra.
Khoảng nửa thế kỷ sau đó, vào năm 1841, nhà hoá học người Pháp là Ơgien Peligo (Eugene Peligo) đã lần đầu tiên điều chế được urani kim loại. Song giới công nghiệp vẫn tỏ ra thờ ơ với nguyên tố nặng và tương đối mềm đó. Các tính chất cơ học của nó không lôi cuốn các nhà luyện kim và các nhà chế tạo máy. Chỉ có những người thợ thổi thuỷ tinh ở xứ Bôhemi và những người làm đồ sành sứ ở Xaxonia là sẵn lòng sử dụng oxit của kim loại này để làm cho cốc chén có màu vàng lục đẹp mắt hoặc để tạo ra những hoa văn cầu kỳ màu nhung đen trang trí cho bát đĩa.
Người La Mã cổ đại đã biết đến “tài năng mỹ thuật” của các hợp chất chứa urani. Trong các cuộc khai quật tiến hành ở gần Napôli, người ta đã tìm thấy những bức tranh tường ghép bằng những mảnh thuỷ tinh có vẻ đẹp kỳ diệu. Các nhà khảo cổ học rất kinh ngạc vì trải qua hai ngàn năm mà thuỷ tinh vẫn không bị mờ đục. Đem các mẫu thuỷ tinh này ra phân tích hoá học thì thấy chúng có urani oxit, nhờ vậy mà bức tranh tường giữ được màu sắc lâu bền đến thế. Tuy nhiên, trong khi các oxit và muối của urani “làm việc có ích cho xã hội”, thì bản thân kim loại này ở dạng nguyên chất lại hầu như chẳng được ai quan tâm đến.
Ngay cả các nhà bác học cũng chỉ quen biết nguyên tố này một cách hời hợt. Những hiểu biết về nó rất nghèo nàn mà đôi khi lại hoàn toàn không đúng. Chẳng hạn người ta cho rằng, khối lượng nguyên tử của nó gần bằng 120. Khi Đ. I. Menđelêep xây dựng hệ thống tuần hoàn thì trị số này đã làm rối mọi sự sắp xếp của ông: theo các tính chất của mình thì urani hoàn toàn không muốn được ghi vào bảng tuần hoàn ở ô dành sẵn cho nguyên tố có khối lượng nguyên tử như thế. Lúc bấy giờ, bất chấp ý kiến của nhiều bạn đồng nghiệp, nhà bác học đã quyết định lấy trị số mới cho khối lượng nguyên tử của urani là 240 rồi chuyển nó xuống cuối bảng. Cuộc sống đã xác nhận sự đúng đắn của nhà bác học vĩ đại: khối lượng nguyên tử của urani bằng 238,03.
Nhưng thiên tài của Đ. I. Menđelêep không phải chỉ thể hiện ở chỗ đó. Ngay từ năm 1872, trong khi đa số các nhà bác học coi urani là một thứ “của nợ” trên nền các nguyên tố quý, thì người sáng tạo ra hệ thống tuần hoàn đã thấy trước tương lai sáng lạn của nó. Ông viết: “Trong số tất cả các nguyên tố hoá học đã được biết đến thì urani nổi bật lên vì nó có trọng lượng nguyên tử lớn nhất … Sự tập trung trọng khối ở urani cao hơn hẳn các chất đã biết ắt phải kèm theo những đặc tính ưu việt…
Vững tin ở một lẽ là việc nghiên cứu urani kể từ cội nguồn thiên nhiên của nó sẽ còn dẫn đến nhiều phát minh mới, nên tôi mạnh dạn khuyên những ai đang tìm đối tượng cho các cuộc nghiên cứu mới thì nên nghiên cứu thật kỹ các hợp chất của urani”
Sau đó chưa đến một phần tư thế kỷ, lời tiên đoán của nhà bác học vĩ đại đã trở thành sự thật : năm 1896, khi tiến hành thí nghiệm với các muối của urani, nhà vật lý học người Pháp là Hăngri Beccơren (Antoine Henri Becquerel) đã hoàn thành một kỳ tích xứng đáng được liệt vào hàng những phát minh khoa học vĩ đại nhất mà con người đã từng làm được. Điều đó đã diễn ra như thế này. Từ lâu, Beccơren đã quan tâm đến hiện tượng lân quang (tức là sự phát sáng) vốn có ở một số chất. Một hôm, nhà bác học đã quyết định sử dụng một trong các muối của urani cho những thí nghiệm của mình. Trên tấm kính ảnh bọc giấy đen, ông đặt một hình hoa văn làm bằng kim loại có phủ một lớp muối của urani, rồi đem tất cả ra phơi dưới ánh năng chói chang để cho sự phát lân quang càng mạnh càng tốt. Sau đó bốn giờ, Beccơren cho hiện hình tấm kính ảnh và thấy rõ trên đó hiện lên bóng dáng rõ nét của hình hoa văn làm bằng kim loại. Làm đi làm lại thí nghiệm này nhiều lần, Beccơre vẫn thu được kết quả như trước. Ngày 24 tháng hai năm 1896, tại phiên họp của viện hàn lâm khoa học Pháp, nhà bác học đã thông báo rằng, nếu được phơi sáng thì hợp chất urani phát lân quang mà ông nghiên cứu sẽ phát ra các tia không nhìn thấy; các tia này thường xuyên đi qua giấy đen và khử muối bạc trên kính ảnh.
Hai ngày sau, Beccơren lại quyết định tiếp tục các thí nghiệm, nhưng chẳng may lúc đó trời u ám, mà không có ánh sáng thì làm sao có lân quang được. Bực mình vì thời tiết xấu, nhà bác học đã cất các mẫu muối urani vào ngăn kéo bàn làm việc cùng với những tấm phim dương đã chuẩn bị sẵn nhưng chưa chiếu sáng, rồi để chúng nằm ở đó mấy ngày. Cuối cùng, đêm mùng 1 tháng ba, gió đã xua tan những đám mây đen trên bầu trời Pari và từ sáng sớm, những tia nắng đã chiếu dọi xuống thành phố bằng. Đang sốt ruột chờ trời tạnh ráo, Beccơren đã vội vã đến phòng thí nghiệm lấy các tấm phim dương ra khỏi ngăn kéo và đem phơi nắng. Vốn là một nhà thực nghiệm rất cẩn thận, nhưng trong giây phút cuối cùng, ông đã quyết định cho hiện hình các tấm phim dương, mặc dầu theo nguyên tắc thông thường mà xét thì sau mấy ngày vừa qua, không thể xảy ra điều gì đối với chúng, vì chúng nằm trong bóng tối, mà không được phơi sáng thì không một chất nào phát lân quang. Trong khoảnh khắc ấy, nhà bác học đã không ngờ rằng, chỉ vài giờ sau, những tấm kính ảnh thông thường chỉ đáng giá vài frăng lại có vinh dự trở thành của quý vô giá đối với khoa học, còn ngày 1 tháng ba năm 1896 thì mãi mãi đi vào lịch sử khoa học thế giới .
Những gì mà Beccơren nhìn thấy trên những tấm kính ảnh vừa qua hiện hình đã làm cho ông hết sức ngạc nhiên : bóng đen của các mẫu đã hiện lên rõ ràng và sắc nét trên lớp cảm quang. Có nghĩa là sự phát lân quang xảy ra ngay chính tại đây, chẳng phải nhờ cái gì cả. Nhưng lúc ấy, muối urani phát ra những tia gì vậy ? Nhà bác học đã làm đi làm lại các thí nghiệm tương tự với các hợp chất khác của urani, trong số đó có cả những muối không có khả năng phát lân quang hoặc đã nằm hàng năm ở chỗ tối, nhưng lần nào cũng vậy, hình mẫu vẫn hiện lên trên tấm kính ảnh.
Beccơren đã nảy ra ý nghĩ, tuy chưa hoàn toàn rõ ràng, rằng, urani là “thí dụ đầu tiên của thứ kim loại bộc lộ một tính chất tương tự như sự phát lân quang không nhìn thấy”.
Cũng trong thời gian này, nhà hoá học người Pháp là Hăngri Muatxan (Antoine Moissan) đã hoàn thiện được phương pháp điều chế urani kim loại tinh khiết. Beccơren đã xin Muatxan một ít bột urani và đi đến kết luận rằng, urani nguyên chất phát xạ mạnh hơn nhiều so với các hợp chất của nó, hơn nữa, tính chất này của urani vẫn không thay đổi trong những điều kiện làm việc hết sức khác nhau, kể cả khi nung rất nóng hoặc khi làm lạnh đến nhiệt độ rất thấp.
Beccơren không vội vã công bố các kết quả mới: ông đợi cho Muatxan thông báo về các cuộc khảo cứu rất thú vị của mình. Đạo đức của nhà khoa học bắt buộc phải làm như vậy. Và đến ngày 23 tháng mười một năm 1896, tại phiên họp của viện hàn lâm khoa học Pháp, Muatxan đã báo cáo về điều chế urani nguyên chất, còn Beccơren thì thuyết trình về một tính chất mới của nguyên tố này - đó là sự biến đổi tự phát của các nguyên tử urani kèm theo sự giải phóng năng lượng bức xạ. Tính chất này được gọi là tính chất phóng xạ.
Phát minh của Beccơren đã đánh dấu sự mở đầu một kỷ nguyên mới trong vật lý học – kỷ nguyên chuyển hoá các nguyên tố. Từ đây, nguyên tử không còn được coi là phân tử đơn nhất và không thể phân chia. Con đường đi vào chiều sâu của “viên gạch nhỏ” xây dựng nên thế giới vật chất đã được mở ra cho khoa học.
Rõ ràng là hiện nay urani đã buộc các nhà bác học phải chú ý đến mình. Đồng thời, một câu hỏi nữa đã khiến họ phải quan tâm: phải chăng, chỉ một mình urani là có tính phóng xạ? Trong thiên nhiên, liệu có thể có những nguyên tố khác nữa mang tính chất này không ?
Các nhà vật lý học xuất sắc – hai vợ chồng Pie Quyri (Pierre Curie) và Mari Xklođopxca – Quyri (Marie Sklođopxca - Curie), đã giải đáp được câu hỏi này. Nhờ một khí cụ do chồng mình chế tạo, bà Mari Quyri đã nghiên cứu một số lượng lớn các kim loại, khoáng vật và muối. Công việc được tiến hành trong những điều kiện khó khăn không thể tưởng tượng nổi. Cái lán gỗ bỏ hoang mà hai ông bà tìm thấy ở một nhà thường dân Pari đã được dùng làm phòng thí nghiệm. Sau này, bà Mari Quyri hồi tưởng lại : “ Đó là một túp lều bằng ván có nền rải nhựa đường và mái lớp kính không đủ che mưa, thiếu mọi tiện nghi. Trong lều chỉ có vài chiếc bàn gỗ cũ kỹ, một cái lò bằng gang không đủ cung cấp nhiệt, một tấm bảng đen mà sao Pie thích sử dụng đến thế. Ở đây không có tủ hút dùng cho thí nghiệm với các chất khí độc, vì thế mà đã phải làm các thí nghiệm ấy ngoài trời khi thời tiết cho phép hoặc nếu làm trong nhà thì phải mở toang hết các cửa sổ”. Trong nhật ký của Pie Quyri có chỗ ghi rằng, đôi khi, công việc được tiến hành trong nhà lạnh đến sáu độ.
Nhiều vấn đề này sinh ngay cả với các vật liệu cần thiết. Với số tiền ít ỏi của mình, hai ông bà Quyri không thể mua được lượng quặng urani đủ dùng vì quặng rất đắt. Họ quyết định yêu cầu chính phủ Áo bán rẻ cho mình các chất phế thải của quặng này, mà ở Áo người ta đã lấy urani ra để dùng ở dạng các muối vào việc nhuộm màu cho đồ sứ và thuỷ tinh. Viện hàn lâm khoa học Viên đã nhiệt trình ủng hộ hai nhà bác học: vài tấn phế liệu quặng đã được chở đến phòng thí nghiệm của họ ở Pari.
Mari Quyri đã làm việc với một nghị lực phi thường. Việc nghiên cứu các loại vật liệu khác nhau đã xác nhận sự đúng đắn của Beccơren – người đã từng cho rằng, tính phóng xạ của urani nguyên chất mạnh hơn so với bất kỳ một hợp chất nào của nó. Kết quả của hàng trăm lần thí nghiệm đã khẳng định điều đó. Tuy vậy, Mari Quyri vẫn tiếp tục nghiên cứu thêm nhiều chất mới. Rồi bỗng nhiên … Lại một điều bất ngờ nữa ! Hai loại khoáng vật chứa urani – chancolit và uranimit ở Bôhemi - đã tác động đến khí cụ đo mạnh hơn urani rất nhiều lần. Kết luận tự nó nảy ra : trong hai loại quặng này có chứa một nguyên tố nào đó chưa biết, có khả năng phân rã phóng xạ còn cao hơn cả urani. Để suy tôn đất nước Ba Lan – quê hương của bà Mari Quyri, hai ông bà đã gọi nguyên tố mới là poloni (trong tiếng La tinh, nước Ba Lan được gọi là Polonia).
Lại lao vào công việc, lại lao động không biết mệt mỏi, rồi một thắng lợi nữa lại đến : đã tìm ra một nguyên tố mới nữa, có tính phóng xạ mạnh hơn urani hàng trăm lần. Các nhà bác học đã gọi nguyên tố này là rađi mà theo tiếng La tinh, nghĩa là “tia”.
Trong một chừng mực nào đó, việc phát hiện ra rađi đã làm cho giới khoa học ít chú ý đến urani. Ngót bốn mươi năm, urani không khuấy động tâm trí các nhà bác học nhiều lắm, và trong suy nghĩ của họ về kỹ thuật, ít khi nó được đề cập đến. Trong một tập sách của bộ bách khoa toàn thư về kỹ thuật xuất bản năm 1934, các tác giả đã khẳng định: “Urani ở dạng nguyên tố không có công dụng thực tế”. Bộ sách đồ sộ này không phạm tội chống lại sự thật, nhưng chỉ vài năm sau đó, cuộc sống đã đính chính lại một số điểm trong khái niệm về khả năng của urani.
Đầu năm 1939 đã xuất hiện hai bản thông báo khoa học. Thông báo thứ nhất do Fređeric Jôlio – Quyri (Fréderic Joliot Curie) gửi đến viện hàn lâm khoa học Pháp với nhan đề “Chứng minh bằng thực nghiệm về sự nổ vỡ của các hạt nhân urani và thori dưới tác động của nơtron”. Thông báo thứ hai được đăng trong Tạp chí “Thiên nhiên” xuất bản ở Anh với đầu đề “Sự phân rã của urani dưới tác động của nơtron: một dạng mới của phản ứng hạt nhân”, mà các tác giả của nó là hai nhà vật lý học người Đức - Ôtto Frit (Otto Frisch) và Liza Mâytne (Lisa Meitner). Cả hai thông báo đều đề cập đến một hiện tượng mới, xảy ra với hạt nhân của nguyên tố nặng nhất là urani mà từ trước tới giờ chưa ai biết đến.
Trước đó mấy năm, “bọn trẻ” (nhóm các nhà vật lý học trẻ tuổi, đầy tài năng, làm việc dưới sự lãnh đạo của Enricô Fecmi tại trường đại học tổng hợp Roma, được người ta gọi một cách thân tình như vậy) đã đặc biệt quan tâm đến urani. Môn vật lý nơtron vốn tàng trữ nhiều điều mới lạ mà chưa ai biết vốn là niềm say mê của các nhà bác học này.
Người ta đã khám phá ra rằng, thông thường, khi bị chùm nơtron bắn vào, hạt nhân của nguyên tố này liền biến thành hạt nhân của nguyên tố khác chiếm ô tiếp theo trong hệ thống tuần hoàn. Nhưng nếu bắn nơtron vào nguyên tố đứng ở ô cuối cùng - ô thứ 92, tức là urani, thì sẽ ra sao? Khi đó phải xuất hiện một nguyên tố đứng ở vị trí thứ 93 – một nguyên tố mà ngay cả thiên nhiên cũng không thể tạo ra được.
“Bọn trẻ” rất thích thú với ý tưởng đó. Vậy thì tại sao không lao vào tìm hiểu xem nguyên tố nhân tạo kia là cái gì, trông nó như thế nào, nó “xử sự” ra sao ? Thế là họ liền bắn phá. Nhưng điều gì đã xảy ra ? Trong urani đã sinh ra không phải chỉ có một nguyên tố phóng xạ như mọi người chờ đợi, mà ít nhất là một chục nguyên tố. Vậy là đã có một điều bí ẩn gì đó trong cách “xử sự” của urani. Enricô Fecmi gửi thông báo về việc này đến một tạp chí khoa học. Có thể, ông cho rằng nguyên tố thứ 93 đã được tạo thành, nhưng không có bằng chứng chính xác về điều đó. Mặt khác, lại có những bằng chứng nói lên rằng, trong urani bị bắn phá có mặt những nguyên tố khác nào đó. Vậy là những nguyên tố nào?
Iren Jôlio – Quyri – con gái của Mari Quyri, đã cố gắng trả lời câu hỏi trên. Bà đã lặp lại những thí nghiệm của Fecmi và nghiên cứu kỹ lưỡng thành phần khoa học của urani sau khi bị bắn phá bằng nơtron. Kết quả lại bất ngờ hơn : trong urani xuất hiện nguyên tố lantan là nguyên tố nằm ở khoảng giữa bảng tuần hoàn, nghĩa là cách rất xa urani.
Cũng làm các thí nghiệm như vậy, các nhà bác học người Đức là Ôtto Han (Otto Hanh) và Friđric Stơratxman (Fridrich Strassman) đã tìm thấy trong urani không những chỉ có lantan mà còn có cả bari nữa. Thật là bí ẩn này thiếp theo bí ẩn khác!
Han và Stơratxman đã thông báo với bạn mình là nhà vật lý học nổi tiếng Liza Mâytne về thí nghiệm mà họ đã làm. Đến đây, cùng một lúc nhiều nhà bác học lớn muốn giải quyết vấn đề urani. Đầu tiên là Fređeric Jôlio – Quyri, sau đó là Liza Mâytne đều cùng đi đến một kết luận : khi bị nơtron bắn vào, hạt nhân urani dường như bị vỡ làm hai mảnh. Điều đó giải thích cho sự bất ngờ của lantan và bari là các nguyên tố có khối lượng nguyên tử xấp xỉ bằng một nửa của urani.
Nhà vật lý học người Mỹ là Lui Anvaret (Louis Alvarez) (sau này đã được trao tặng giải thưởng Noben) đã bắt gặp tin này vào một buổi sáng tháng giêng năm 1939 khi đang ngồi trên ghế cắt tóc. Ông đang bình thản xem lướt qua một tờ báo, bỗng nhiên, một đầu đề khiêm tốn đập vào mắt ông : “Nguyên tử urani đã bị phân chia thành hai mảnh”. Sau một khoảnh khắc, trước sự ngạc nhiên của người thợ cắt tóc và những người đang chờ đến lượt mình, người khách kỳ lạ này vụt chạy ra khỏi cửa hiệu cắt tóc với cái đầu mới húi được một nửa và chiếc khăn choàng đang buộc chặt vào cổ, tung bay phần phật trước gió. Không để ý đến những khách qua đường đầy kinh ngạc, nhà vật lý học lao ngay vào phòng thí nghiệm của trường đại học tổng hợp California, nơi ông làm việc, để báo tin cho các bạn đồng nghiệp của mình biết cái tin sốt dẻo này. Lúc đầu, các bạn ông rất sừng sờ trước hình ảnh kỳ dị của Anvaret khi ông vung vẩy tờ báo, nhưng khi họ nghe kể về phát minh làm chấn động dư luận này thì họ đã quên ngay cái đầu tóc khác thường của ông.
back-to-top.png